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1. INTRODUCTION

Since the early 1970s, many different techniques have been used to analyze the
behavior of an antenna with a nonlinear load (References 1 through 11). While the
characteristics of antennas with nonlinear loads have been analyzed in both the frequency
and time domains, until now little attention has been given to possible chaotic effects that

~can result as a consequence of such nonlinearities. This oversight is not surprising, since
only recently the field of chaos has moved from an essentially academic phenomenon to
an intense applied research area in which chaotic behavior can be used to solve challenging
technical problems.

In the following discussion, an electrically small dipole antenna was loaded with the
nonlinear circuit known as Chua’s circuit (References 12 through 17). A particularly
simple and very widely studied real nonlinear dynamical system, Chua’s circuit has a
number of significant advantages over other similar nonlinear circuits. First, it is the
simplest circuit known (consisting of a linear inductance, a linear resistance, two linear
capacitances, and only one nonlinear element) that still exhibits a rich variety of chaotic
phenomena. Second, it is a physical system for which the presence of chaos has been
proven analytically, simulated numerically, and demonstrated experimentally
(References 14 and 17). Third, Chua’s circuit is easily constructed using standard
electronic components at low cost (Reference 18). It is an ideal example of a low-order
physically simple system that can exhibit extremely complex, nonperiodic, bounded
behavior.

The reason for loading a dipole with Chua’s circuit is to attempt to create an antenna
that can easily switch from chaotic to nonchaotic behavior and vice versa. As is shown,
this switching is easy to do in terms of the input voltage and current, as functions of time
at the antenna input terminals, by simply changing certain values of the linear reactive and
resistive elements (i.e., using variable resistors) that make up Chua’s circuit. For an
electrically small antenna (small in spatial extent such that the antenna length is only a
small fraction of the wavelengths considered), it can be demonstrated numerically that
when the antenna voltage function is temporally chaotic with a characteristic dynamical
behavior the antenna will radiate temporally chaotic electromagnetic fields (referenced to
some later time), exhibiting the same characteristic dynamical behavior. Similarly when
the antenna voltage function is not chaotic, the associated fields (referenced to some later
time) will be nonchaotic also. The ability to radiate a waveform that is predictable and
periodic in time and then to suddenly switch to radiating a waveform that is complex and
nonperiodic in time has obvious application to the area of secure communication.

(U8}
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In Section 2, the simplest equivalent circuit model for the electrically small dipole,
modeled as a pure capacitance and loaded with a modification of Chua’s circuit, known as
Chua’s oscillator, is shown and discussed. In Section 3, the relationship is derived
between the voltages and currents resulting from the nonlinear load and the current that
flows on the antenna element. Also an approximate vector potential function is
introduced (based on the electrically small assumption) and the electromagnetic field
components are determined. At this point both time series plots and delay coordinate
plots of the electromagnetic field components are used to demonstrate when the
electromagnetic fields are chaotic and when they are not. Section 4 provides discussion
and conclusions.

2. EQUIVALENT CIRCUIT OF A SMALL DIPOLE LOADED WITH CHUA'’S
OSCILLATOR: ANTENNA CAPACITANCE

The original isolated Chua’s oscillator, shown in Figure 1, is composed of two linear
resistors, R = 1/G and Ry; two linear capacitances, C; and C,; a linear inductor, L; and a
voltage-controlled nonlinear resistor, N, called a Chua’s diode (Reference 18). When R
is set equal to zero, this circuit is known as Chua’s circuit. Figure 2 shows the electric
dipole loaded with Chua’s oscillator. Imposing the restriction that the antenna is thin and
electrically small and can be modeled as an induced voltage, V,(t), at the antenna terminals
and an antenna capacitance, C,, (Reference 1), the antenna parameters and Chua’s
oscillator can be combined as in the equivalent circuit of Figure 3. In Figure 3, V, and C,
are now in parallel with C,, V, and C,, V;. This equivalent circuit results in three coupled
ordinary differential equations given by

L =—%(ROI3+VG) (la)

. 1
V, = v [5-(V,-W)G] (1b)
Vi = [(Va= W)G- () (10

1
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FIGURE 2. Nonlinearly Loaded Dipole Antenna.
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FIGURE 3. Equivalent Circuit of a Small Dipole Antenna Loaded With

Chua’s Oscillator.
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Equation 1 describes a three-dimensional phase space (or state space) given by
NOESIORAGRAG) ©)

which is the state of the system at time t. A solution X(¢) starting from some initial state,
{I3(to), Va(to), Vi(to)}, at some beginning time, to, is called a trajectory of Equation 1. In
Equation 1c, f(V,) denotes the piecewise-continuous linear approximation of the driving-
point characteristic of the Chua’s diode. The function f(V) is given by Reference 17,

GbVl +(Gb—Ga)E ; Vl <-F
M) =<GH ; W <|E| A3)
GV -(Gy=G,)E ; W >E

where E >0, G, <0, and G, < 0 (Reference 17, Figure 3).

Several explanatory remarks are in order. In Figure 3, we used the fact that V,=V,.
Also it is important to note that the antenna capacitance, C,, is usually on the order of
1072 farads (F) for an electrically short thin dipole. This value is generally much less than
typical values of C, (see Figure 3), which are usually on the order of 107 F
(Reference 19). Thus, in general C,<< C, and C, << C, also. From further consideration
of Equations 1 and 3, if the C of Figure 3 is reduced by the exact amount, C,, then, when
Ca is added back again into Equation 1, this three-dimensional system is numerically
identical to the isolated Chua’s oscillator equations. An analysis of this set of equations
is given in Reference 19.

Once V,(t), the voltage at the antenna input terminals, is known from solution of
Equation 1, the current on the antenna at the input terminals is given by

I(t)=C,Va(?) )
or
Ca
=2 {BO-[V.()-v()]6} )
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For the dynamical system of Figure 3, the three local Lyapunov exponents are given
by

A= K 6a
1= (62)
S | (6b)
Ca + C2

—@-C—Gb—) ; outer regions

ool ove) g
-~——22 . innerregion
G

It is obvious that A3 is the only local Lyapunov exponent with the possibility of
being positive (and thus producing chaotic behavior) (References 20 and 21) in an average
sense. The sign of A; is, of course, dependent on the magnitude relationships among the
linear conductances G, G,, and G, Using Equation 1, and either Equation 4 or 5, the
antenna current and voltage at the input terminals are known numerically as functions of
time and are used in the next section to obtain the electromagnetic fields of the dipole
antenna loaded with Chua’s oscillator.

3. VECTOR POTENTIAL FORMULATION

Assuming that the small dipole of length 2h is oriented along the z-axis of a right-
handed coordinate system, the associated vector potential can be written as

AF)=222 | — @)
ar _, |7 =22

At this point, if the antenna is small, one can assume that the current does not vary
spatially along its length, z'. This is essentially an infinitesimal dipole assumption when
the current is assumed to be constant in a spatial sense. (A triangular or sinusoidal spatial
distribution could be used also if desired.) In this case,

Ia(Z/,t“lr——Z-gl]zIa(t—Mj (8)

c c
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For an electrically small antenna, the first-order approximation
FrF-z'% ®)

can be used, and thus the right-hand side of Equation 8 becomes

Ia(t—l—?—_ci’fljzla(t—f) (10)

Now that Equation 10 can be used to replace the current function in Equation 7 and
is no longer dependent on 2, the vector potential becomes simply

A1) ~ 3020 Ia(z—f) (11)
ir

Now, I,(t) is already known from solving Equation 1 numerically and subsequently
substituting the results into either Equation 4 or 5, and thus the time-retarded function in

. . . . ro.
Equation 11 is obtained by substituting the new argument, t - —, into the known L(0).
c

: , ro. . e . . .
The new retarded time, t"=t- —, is simply an indication that as the dipole radiation
c
moves outward in a spherical wave (at least, in the far-field) traveling at the speed of light,
the radiation at time t’ will not reach some fixed field point, 7, until some later time, t.

Using

ﬁ=—LVxA ;'—é—?li:cszVxA. (12)
Lo or

the electromagnetic field components in the time domain at some field point, 7, and some
time, t, can be written in the form

. ’ 2 ’

Hy (7 1) = C,hsin _{dVa(’t )+ld Vagt ) (132)

2nr . |r dt c dr
E ()= Cahc0§6|:\{1(t )+£dVa(/t )} (13b)

gomr r c drt
. ’ ’ 2 ’
E,(7.1)= C,hsin6 _{d\{,(/t)_F Va(zt)'*‘izd V;igt) (130)
Ep2nr | rc dt r c” dt
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Equation 13b and ¢ was obtained by substituting Equation 4 into Equations 11 and
12 and integrating indefinitely over the retarded time, t'. For now, the constants of
integration have been set to zero for convenience. It is worth noting that in computing
Equation 13, extensive use was made of the relationship

W) 1a(r) _ 1dL,()

or c ot c dr

(14)

Because the electromagnetic field components in Equation 13 can all be expressed in
terms of V,(t') and its time derivatives, we speculate that if the antenna is sufficiently
small for the equivalent circuit model of Figure 3 to be accurate and if the antenna input
voltage is chaotic then the electromagnetic field components will be temporally chaotic
also (at some later time). Similarly, if V,(t) is not chaotic, then the fields will not be
chaotic at some later time.

At this point it is necessary to demonstrate this translation of chaotic (or nonchaotic)
behavior from the surface of the antenna, i.e., from the input terminals to the radiated
electromagnetic field components. Usually time series plots of the electromagnetic field
components (i.e., the field component amplitude plotted as a function of time) can be
used. When a time series plot exhibits periodic behavior, the demonstration of periodicity
is very compelling. However, chaotic states are not as easily shown to be chaotic simply
from using time series plots. For possible chaotic states, it is more useful to employ a
delay coordinate plot (Reference 22), which can reveal the characteristic shape of a
chaotic attractor, if one exists. Thus, in Section 2 for X(¢) given in Equation 2, it is
possible to plot I5, V,, and V| in a three-dimensional state space and to determine whether
I, V,, and V, exhibit chaotic behavior. Each variable could also have been plotted as a
function of time in a time series, although this method would not have been as effective
for demonstrating chaos.

For the electromagnetic field components in Equation 13, these are known only as
functions of time and can be plotted in time series also. But the delay coordinate method,

for example, plots Eg(7,t) vs. Eg(?,t —i) Vs. Eg(?,l— 2) In this case, each value of
c ¢

some time series, i.e., Eg(F,t) vs. ¢, is plotted versus a time-delayed version of itself. If

the delay coordinate plot closes on itself, i.e., if the orbits are closed orbits, then periodic
behavior has been demonstrated. If the delay coordinate plot is very complex, not closing
on itself and producing some type of strange attractor, then chaotic behavior has been
demonstrated. Although delay coordinates are generally used to reconstruct an initially
unknown state space from a limited set of measured data, they can also be used for
functions such as Equation 13.



NAWCWD TP 8460

To demonstrate numerically whether or not a chaotic (or periodic) voltage and
current on the antenna will produce the same type of chaotic (or periodic) electromagnetic
field behavior, three cases are considered:

1. A periodic antenna input terminal voltage, V, (1), is used where the conductance,

G= s in Figure 3 is 530.0 microsiemens (uS). (All other values are given in the figure

legends.)

2. An antenna input terminal voltage, V,(t), is a limit cycle of period-four,
obtained when the conductance is increased to 539.0 pS.

3. A fully chaotic antenna input terminal voltage, V,(t'), is a spiral Chua’s chaotic
attractor, obtained when the conductance is increased to 550.0 pS.

Thus, the route to chaos that has been chosen is the period-doubling route and the
bifurcation parameter is G, the conductance (References 19 and 21). We demonstrate
numerically, using both time series plots and delay coordinate plots, that the dynamics
occurring at the surface of the antenna also occur at some later time in the radiated
electromagnetic field.

CASE 1: PERIODIC CASE

The first case assumes that the linear circuit parameters of the equivalent circuit in
Figure 3 have values such that V,(t) is periodic (Reference 19) (F igure 4a). Figure 4a is a
three-dimensional phase space plot of I3, V,, and V|, determined by solving Equation 1.
This plot is a limit cycle of period-1 and exhibits only one closed loop, immediately
indicating the periodic nature of V,(t’) in this case. Note that all circuit parameters are
given in the figure captions. Figure 4b is the corresponding time series plot of the antenna
voltage amplitude versus time and is oscillatory with a single period.

Figure 5a is a three-dimensional delay coordinate plot of the magnetic field, H,, at
three separate times and separate fixed radii. Using Equation 13 and the extra parameters -

shown in Figure 5a, Hy(t) vs. H¢(r--’:] VSs. H¢(t—z£)is plotted, where r is the radial
c c

distance to some field point away from the antenna and c is the speed of light. This delay
coordinate plot of H,, while somewhat different in shape and orientation from the antenna
voltage in Figure 4a, exhibits exactly the same dynamical behavior, i.e., a limit cycle of
period-one.

10
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.
i

(a) Three-dimensional phase space plot of antenna voltage versus V; and I;. Circuit
parameters are Ry = 12.5 Q, L = 18.0 mH, C; = 10.0 nF, C, = 100.0 nF,
G, =-757.576 puS, G, =-409.090 uS,E=1.0 V, C,=10.0 pF, G = 530.0 uS.

V(0

0.5¢

000k p.dod ol.op1% ¢.do2 olob2d d.003
-0.25

-0.5

-0.75¢

(b) Time series plot (same circuit parameters as Figure 4a).

FIGURE 4. Plot of Antenna Voltage Showing Periodic Behavior.

11
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(a) Three-dimensional delay coordinate plot, H,. Circuit parameters are Ry = 12.5 Q,
L =18.0 mH, C; =10.0 nF, C, =100.0 nF, G, =-757.576 uS, G, = -409.090 uS,
E=10V,C,=10.0pF,G=530.0puS,r=7.5x10°m, h=0.01 m, 6 =7/2,
Io=100 A, c=3x 10® mys.

Hy(t)

0 Joops|010dz b.poislolodz b.bods o bo3

-2.-107%¢

-4.107¢

(b) Time series plot of magnetic field versus time (same parameters as Figure 5a).

FIGURE 5. Plot of Magnetic Field Showing Periodic Behavior.

12
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In Figure 5b, the periodic nature of the magnetic field as a function of time, is shown

in a time series plot. Similarly, Figure 6a is a three-dimensional delay coordinate plot of

. X . /4 .
the electric field E, (since 6 is assumed to be > the E; component is zero), at three

. o 2
separate times and separate fixed radii, i.e., Eg(z) vs. Eg(t—-’:J Vs. Ee(t——z). It too
¢ ¢

exhibits period-one limit cycle behavior just as shown in Figure 4a. Figure 6b is the
corresponding time series plot for E, as a function of time and is periodic.

(a) Three-dimensional delay coordinate plot, E,, (same parameters as Figure 5a).

FIGURE 6. Plot of Electric Field Showing Periodic Behavior.

13
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Eq(t)
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0.002¢
0.001t
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-0.001}

-0.002

-0.003¢

(b) Time series plot of electric field versus time (same parameters as Figure 5a).

FIGURE 6. (Contd.)

CASE 2: PERIOD-4 CASE

The second case assumes that the parameters of the equivalent circuit in Figure 3 are
the same as in Case 1, with the exception that now G = 539 uS. Increasing the value of
the conductance causes the limit cycle of Case 1 to now bifurcate so that it closes on itself
after four loops of the trajectory. This is a result of period-doubling, a well known route
to chaos (References 19, 21, and 22). This intermediate case is shown in Figure 7a, where
- the phase space dynamics involving the antenna voltage, V,, exhibit four loops before
closing on itself, indicating period-4 limit cycle behavior. The four distinct periods are
also shown in the time series plot of V, versus t in Figure 7b.

Using the same parameters as those used in Figure 7a, Figure 8a is a three-
. dimensional delay coordinate plot of the magnetic field, which also shows four separate
loops indicating period-4 behavior. Although amplitude, orientation, and loop shape are
different from those in Figure 7a, the period-4 dynamics are undeniable. Figure 8b is the
corresponding time series plot with four distinct periods. Similarly in Figure 9a and b, the
delay plot and the time series plot for E, exhibit the same period-4 behavior.

14
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| ?

(a) Three-dimensional phase space plot of antenna voltage versus V; and I.
Circuit parameters are Ry = 12.5 Q, L = 18.0 mH, C, = 10.0 nF, C, = 100.0 nF,
G, =-757.576 pS, G, = -409.090 uS, E=1.0 V, C, = 10.0 pF, G = 539.0 pS.

\

V.

0.75

t

0.400 0.[001 0.0015 0.902 0.0025 0.003

-0.25}

-0.75}

(b) Time series plot of antenna voltage versus time (same circuit parameters as Figure 7a).

FIGURE 7. Plot of Antenna Voltage Showing Period-4 Behavior.
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62-10°% 0

-4-10

(a) Three-dimensional delay coordinate plot of magnetic field, H,. Circuit parameters are
Ry=12.5Q,L =18.0 mH, C; =10.0 nF, C, = 100.0 nF, G, = -757.576 pS,
Gp =-409.090 uS, E=1.0V, C,=10.0 pF, G=539.0 uS, r=7.5x 10° m,
h=0.01m,6=7/21,=100 A, c=3x 10° m/s.

Hy(t)

4-107%}

2-107%¢

t

0l. 0005 .00 010015 .00 0.0025 04003

-2.107%}
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(b) Time series plot of magnetic field versus time (same parameters as Figure 8a).

FIGURE 8. Plot of Magnetic Field Showing Period-4 Behavior.
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0.002¢f

-0.002}

(a) Three-dimensional delay coordinate plot of electric field, E,
(same parameters as Figure 8a).

t

0.000 0./001 0.901 0.902 0.0025 0.003

-0.001
~0.002}

-0.003¢

(b) Time series plot of electric field versus time (same parameters as Figure 8a).

FIGURE 9. Plot of Electric Field Showing Period-4 Behavior.
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CASE 3: CHAOTIC CASE

The third case assumes that the circuit parameters of the equivalent circuit of
Figure 3 are the same as for the two previous cases, except that now the conductance has
been increased to 550 uS (Reference 19). This particular value of G causes the antenna
voltage, V(t'), to be chaotic, specifically resulting in a spiral Chua’s chaotic attractor
(Reference 19). It is shown in Figure 10a and is an extremely distinctive chaotic attractor.
Figure 10b is the associated time series plot of the antenna voltage amplitude as a function
of time, which immediately shows complex, bounded, nonperiodic behavior.

Figure 11a is the three-dimensional delay plot of the magnetic field, H,. While again
showing different amplitude, shape, and orientation when compared to Figure 10a, it
exhibits the same spiral chaotic attractor form, including the central loop that overlaps the
remainder of the spiral, with the remaining overlapping loops occurring at the top of the
figure rather than at the bottom. A comparison of Figure 10b and Figure 11b shows
similar behavior in the time series plots. Figure 12a, the delay plot of E,, also gives a very
faithful representation of the spiral Chua’s chaotic attractor, again showing the same
overlapping loops as in Figure 10a in somewhat different orientations but distinctively

seen. The time series plot of E, in Figure 12b is almost identical in form to the time series
antenna voltage plot in Figure 10b.

18
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(a) Three-dimensional phase space plot of antenna voltage versus V; and I;.
Circuit parameters are Ry =12.5 Q, L = 18.0 mH, C, = 10.0 nF,
C,=100.0 nF, G, =-757.576 pS, Gy, = -409.090 uS,E=1.0 V, C,= 10.0 pF,
G =550.0 uS.

Vi

0.75
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T

o
[=3
o
o
o

0Jo01
-0.25

-0.75

(b) Time series plot of antenna voltage versus time showing complex nonperiodic
behavior (same circuit parameters as Figure 10a).

FIGURE 10. Plot of Antenna Voltage Showing Chaotic Behavior.
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(a) Three-dimensional delay coordinate plot of magnetic field, H,. Circuit parameters are
Ro=12.5€Q, L =18.0 mH, C; = 10.0 nF, C, =100.0 nF, G, = -757.576 pS,
Gp =-409.090 uS,E=1.0 V, C,=10.0 pF, G = 550.0 pS,
r=75x10°m,h=.01m,0=mn/2,1,=100 A, c =3 x 10® mys.

Hy(t)

JUUHL AR
T

o
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W

(b) Time series plot of magnetic field versus time showing complex nonperiodic behavior
(same parameters as Figure 11a).

FIGURE 11. Plot of Magnetic Field Showing Chaotic Behavior.
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U.005
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Eq(t) o Ee(t‘ﬂ

(a) Three-dimensional delay coordinate plot of electric field, E,
(same parameters as Figure 11a).

Eg(t)
0.006}

0.004F
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-0.004+

-0.006¢

(b) Time series plot of electric field versus time showing complex, nonperiodic behavior
(same parameters as Figure 11a).

FIGURE 12. Plot of Electric Field Showing Chaotic Behavior.
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4. CONCLUSION

The electrically small dipole antenna loaded with Chua’s oscillator as the nonlinear
load was analyzed. By using certain numerical values for the linear reactive and resistive
elements of this circuit, various types of periodic, period-doubled, and chaotic behavior
that occur for the voltage at the antenna input terminals can also be shown to occur for
the associated radiated electromagnetic field components. Using three cases, i.e., periodic,
period-4, and chaotic behavior, we show that the voltage characteristic dynamics
determined at the input terminals are the same dynamics of the radiated electromagnetic
field components.

Thus, for an electrically small dipole, we demonstrated that when the antenna voltage
function is temporally chaotic, the antenna will radiate temporally chaotic electromagnetic
fields with the same dynamical behavior referenced to some later time. Similarly, when
the antenna voltage is periodic, the radiated fields will be periodically referenced to some
later time also. Thus, switching between a periodic and a chaotic temporal

_electromagnetic field behavior can be accomplished by simply increasing the conductance
of a single resistor of the antenna/Chua’s oscillator equivalent circuit.
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